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Influence of image resolution and evaluation algorithm on estimates of the lacunarity
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In recent years, experience has demonstrated that the classical fractal dimensions are not sufficient to
describe uniquely the interstitial geometry of porous media. At least one additional index or dimension is
necessary. Lacunarity, a measure of the degree to which a data set is translationally invariant, is a possible
candidate. Unfortunately, several approaches exist to evaluate it on the basis of binary images of the object
under study, and it is unclear to what extent the lacunarity estimates that these methods produce are dependent
on the resolution of the images used. In the present work, the gliding-box algorithm of Allain and Cloitre
[Phys. Rev. A 44, 3552 (1991)] and two variants of the sandbox algorithm of Chappard er al. [J. Pathol. 195,
515 (2001)], along with three additional algorithms, are used to evaluate the lacunarity of images of a textbook
fractal, the Sierpinski carpet, of scanning electron micrographs of a thin section of a European soil, and of light
transmission photographs of a Togolese soil. The results suggest that lacunarity estimates, as well as the
ranking of the three tested systems according to their lacunarity, are affected strongly by the algorithm used, by
the resolution of the images to which these algorithms are applied, and, at least for three of the algorithms
(producing scale-dependent lacunarity estimates), by the scale at which the images are observed. Depending on
the conditions under which the estimation of the lacunarity is carried out, lacunarity values range from 1.02 to
2.14 for the three systems tested, and all three of the systems used can be viewed alternatively as the most or
the least “lacunar.” Some of this indeterminacy and dependence on image resolution is alleviated in the
averaged lacunarity estimates yielded by Chappard et al.’s algorithm. Further research will be needed to

determine if these lacunarity estimates allow an improved, unique characterization of porous media.

DOI: 10.1103/PhysRevE.72.041306

I. INTRODUCTION

Over the last two decades, a significant body of research
has been devoted to quantifying the fractal characteristics of
natural or manufactured porous media. Motivation for this
effort initially arose from the hope of encapsulating in a
single number—the fractal dimension—the intricate geom-
etry of the interstitial space, and of using this number to
predict a range of other properties of porous media. As in
other disciplines [1-3], this hope has since been severely
dashed for a number of practical reasons, including the facts
(1) that the physical nature of porous media requires consid-
eration of not one but three distinct fractal dimensions, asso-
ciated respectively with the pores, the solid phase, and the
pore-solid interfaces [4,5], (2) that each of these dimensions
can be evaluated with a variety of algorithms, often yielding
different estimates [4,6], and (3) that, when the evaluation
algorithm relies on pictures of the porous media, the resolu-
tion of these pictures and their prior treatment (e.g., segmen-
tation or thresholding) can influence significantly the fractal
dimension estimates that are obtained [5,7-12].
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Aside from these practical difficulties, perhaps the most
fundamental problem with the application of fractal geom-
etry to porous media is that it is unclear why the hope of
encapsulating the intricate geometry of porous media in a
single index ever arose in the first place. Indeed, at the same
time he coined the term “fractal”, Mandelbrot [13] pointed
out that fractal dimensions would not suffice to provide a
satisfactory description of the geometry of lacunar fractals,
and that at least one other parameter, which he termed “la-
cunarity,” is necessary. The key reason for this requirement is
vividly illustrated by the fact that Sierpinski carpets (Fig. 1)
that have greatly different appearances, and therefore would
likely behave differently if they were physical objects, can
nevertheless have precisely the same fractal (similarity) di-
mension. Therefore, the fractal dimension alone is not a very
reliable diagnostic of the geometry and properties of lacunar
fractals, and any attempt to find a unique relationship be-
tween the fractal dimension and any particular feature (e.g.,
transport or dielectric properties) of a porous medium is most
probably doomed to failure, unless it also accounts explicitly
for the lacunarity of the porous medium.

Mandelbrot [13-15] introduced the concept of lacunarity
as a measure of the distribution of gap sizes in a given geo-
metric object. In other words, lacunarity can be thought of as
a measure of the “gappiness” or “holiness” of a geometric
structure [6]. Objects are more lacunar if their gap sizes are
distributed over a wider range. In that sense, the Sierpinski
carpet of Fig. 1(a) is more lacunar than that of Fig. 1(c). A
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deviation of a geometric object from translational invariance.
In a low lacunarity object, where gap sizes are relatively
homogeneous, different regions of the object tend to be simi-
lar to each other [as in Fig. 1(c)]. In contrast, in a high
lacunarity object [like that in Fig. 1(a)], different regions
may be very dissimilar and cannot be made to coincide by
simple translation. This characterization of the translational
invariance of geometric objects is highly scale dependent;
objects that are heterogeneous at small scales, can be homo-
geneous when examined at larger scales or vice versa [16].

A method for calculating the lacunarity was outlined in
general terms by Mandelbrot [13]. Subsequently, progress
toward a usable method was made by Gefen et al. [16]. Al-
lain and Cloitre [17] developed a straightforward algorithm,
based on “gliding boxes” (or “moving windows”) of increas-
ing sizes, to evaluate the lacunarity of both deterministic and
random fractals. More recently, Chappard er al. [18] de-
scribed a different method to calculate the lacunarity, based
on the mass-radius or sandbox algorithm used routinely to
estimate fractal dimensions. Both of these algorithms have
been used extensively in the literature, e.g., [19,20]. Yet fun-
damental questions remain unanswered concerning their ro-
bustness. In particular, it is unclear how much one should
expect the lacunarities calculated by these algorithms to dif-
fer in specific cases. Perhaps more significantly, there is no
information on the extent to which the lacunarity estimates
yielded by current algorithms depend on the resolution of the
images to which the algorithms are applied.

In this general context, the objective of the present paper
is to analyze the effect of image resolution and of the choice
of a particular calculation algorithm on estimates of the la-
cunarity of a number of porous media. The first section of
this article, immediately following this introduction, de-
scribes succinctly the gliding-box algorithm as well as two
variants of the sandbox algorithm. It also introduces two ver-
sions of a different algorithm that combines the geometry of
the sandbox method with the statistics used in the gliding-
box algorithm. Conversely, another algorithm is proposed
that combines the geometry of the gliding-box method with
the statistics used in Chappard et al.’s [18] algorithm. The
next section describes the textbook Sierpinski carpet, the
scanning electron micrograph of a soil thin section, and the
light transmission photograph of a Togolese soil thin section,
whose lacunarities are subsequently evaluated. The calcula-
tion results are analyzed critically in the last section, particu-
larly in regard to the robustness of lacunarity estimates and
to the possible usefulness of this parameter in future studies
of the physical properties of porous media.
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FIG. 1. Examples of second it-
erate prefractals of Sierpinski car-
pets having different appearances,
but identical fractal (similarity) di-
mension. In all three cases, the it-
erative construction process con-
sists of dividing the initiator in 7
X 7=49 squares, and removing 3
X 3=9 squares. This process is
associated with a similarity di-
mension D,=1n(49-9)/1In(7)
=1.8957.

II. THEORY
A. The gliding-box algorithm

In this calculation method, suggested by Allain and Cloi-
tre [17] and referred to in the following by the acronym
(GLBA) a square structuring element or moving window of
side length [ is placed in the upper left-hand corner of an
image of a solid geometrical structure of side length T (such
that /<T). The calculation algorithm records the number or
“mass” m of pixels that are associated with the solid under-
neath the moving window. The window is then translated by
one pixel to the right and the underlying mass is again re-
corded. When the moving window reaches the right side of
the image, it is moved back to its starting point at the left
side of the image and is translated by one pixel downward.
The calculation proceeds in this fashion until eventually the
moving window reaches the lower right-hand corner of the
image, at which point it has explored every one of its (71
+1)? possible positions above the solid.

At that juncture, one may easily compute the number
n(m,l) of times a particular value of the mass m has been
recorded with the moving window of side length /. Division
of n(m,[) by the total number (T—1+1)? of possible positions
of the moving window above the image yields the probabil-
ity distribution function Q(m,l)=n(m,l)/(T—1+1)>. The sta-
tistical moments Zg’)(l) of this probability distribution func-
tion are defined as

Z§ (1) = 2 m*Q(m.1) (1)

where ¢ equals 1 and 2 for the first and second moments,
respectively, and the summation extends over all possible
values of m (i.e., from 0 to I* for a moving window of side
length ).

On the basis of these moments, Allain and Cloitre [17]
define the lacunarity Agp(l), measured with a moving win-
dow of side length /, as

Z(2>(l)
__0

Since the first moment Z\\” s equal to the mean u, of the
probability distribution function Q, and the second moment
Zg) is equal to the sum of the variance o‘é of O and the
square of the mean, i.e., Zg)=02+ w2, one may rewrite Eq.

(2) as
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which shows, perhaps more clearly than Eq. (2), that Ag5(])
is fundamentally a relative measure of the width of the dis-
tribution Q(m,l). For a translationally invariant set, it is
straightforward to show that Z(Qz)(l)z[ZS)(l)]z. Under these
conditions, A(l) becomes identically equal to unity, and is
independent of I [17].

B. Chappard et al.’s sandbox algorithm

The algorithm developed by Chappard et al. [18] is based
on the sandbox method elaborated earlier by Tél et al. [21].
In the Chappard er al. sandbox algorithm (CSBA), a number
s of points or “seeds” are selected randomly within the geo-
metrical domain occupied by the object under study, with s
taken either arbitrarily or equal to the number of seeds at
which convergence is reached for a number of targeted sum-
mary statistics. Around each seed, k concentric circles are
drawn and the mass m of the object that is contained in each
circle is recorded as a function of the circle diameter /. Once
this process has been carried out for all s seeds, one may
compute a mass distribution n(m,[) that depends on the mass
m and circle diameter /. This mass distribution can readily be
transformed into a probability distribution function Q(m,[)
via division by the number s of seeds, i.e., according to
O(m,)=n(m,l)/s.

Using once again Eq. (1) to define the moments of the
probability distribution function Q(m,l) and remembering
that the variance of Q(m,l) is equal to the difference of
Z(Q")(l) and [Z(Qq)(l)]z, one finds easily that the coefficient of
variation cv(/) of Q(m,[) is given by

o 2P -1z 0P
cv(l) = W Z(Ql)(l) (4)

This coefficient of variation is related to Agg(l) by the rela-
tion cv(/)=Agp(l)—-1 .

Chappard er al. [18] use this coefficient of variation to
define their lacunarity L. as follows:

1
Le= %EI cv(l) (5)

where the summation extends over all k circle diameters con-
sidered around the seeds.

At this point, two different versions of Chappard et al.’s
sandbox algorithm can in principle be envisaged. The first
version, denoted by CSBAo, constrains the seeds in such a
way that they are located only on the geometrical object
under study, and not in the gaps within the object. This re-
striction is commonly adopted in the literature, albeit never
justified theoretically. The second version, labeled CSBAog,
assumes on the contrary that seeds can be selected indiffer-
ently on the object or in the gaps. Comparison of Egs. (2)
and (5) makes it readily apparent that Agp(l) and L. are
fundamentally different concepts. Indeed, whereas Az(l)
depends on the side length / of the moving windows or struc-
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turing element, Chappard et al.’s lacunarity L. does not de-
pend on [, as a result of the averaging of cv(l) over the
number of circle radii, k, in Eq. (5).

C. The modified sandbox algorithm

Since in the course of implementing the CSBA, one cal-
culates a probability distribution function Q(m, r) that is con-
ceptually similar to that involved in the GLBA, it is in prin-
ciple possible to apply to this second probability distribution
the same statistical method [specifically, Egs. (1) and (2)]
that was used for the first. In other words, the first and sec-
ond moments of the Q(m,l) resulting from the sandbox al-
gorithm can be computed according to Eq. (1) and intro-
duced into Eq. (2) to yield a lacunarity Agg(l) that is
dependent on [. As with the CSBA, the modified sandbox
algorithm MSBA can be implemented using seeds belonging
to both object and gaps, or using seeds belonging only to
object. The algorithms associated with these two options will
be referred to as MSBAog and MSBAo, respectively.

D. The modified gliding-box algorithm

The arguments presented in the preceding subsection to
justify an additional algorithm for the calculation of the la-
cunarity can be applied symmetrically to the GLBA. The
resulting algorithm is referred to as MGLBA. Instead of in-
troducing the numerical values of the first and second mo-
ments of Q(m,l) into Eq. (2) to compute Agz(l), one may
introduce them in Eq. (4) to calculate a coefficient of varia-
tion cv([). This coefficient of variation in turn may be used in
an expression equivalent to Eq. (5) to define a lacunarity
parameter L;p, which can be directly compared to Chappard
et al.’s [18] Lgg.

III. IMAGES AND LACUNARITY CALCULATIONS
A. Images of the Sierpinski carpet prefractal

The first set of images analyzed in the present article is
related to the traditional Sierpinski “carpet” (Fig. 2), a text-
book geometrical fractal described in detail in many publi-
cations, e.g., [4,13]. The iterative procedure that leads to this
carpet starts with a square initiator of side length L. In the
first step in the iteration (called the generator), this square is
partitioned into nine subsquares of side L/3 and the center
subsquare is removed. In the subsequent step, the generator
is applied to each remaining square of side L/3, i.e., it is
again partitioned into nine subsquares of side L/3?=L/9, and
the center subsquare is removed. When one applies this same
iterative process ad infinitum to the remaining squares, the
Sierpinski carpet is obtained. It has a similarity dimension
equal to In(8)/In(3)=1.89, a vanishing area, and a porosity
(area of openings or voids divided by the total area of the
square initiator) equal to 1, whereas the total perimeter of its
holes is infinite.

Since the real Sierpinski carpet cannot be represented
graphically, an image of its highest iterate, the eighth, that is
manageable computationally with a desktop computer, was
considered in the analysis. It has 6561 X 6561 pixels. Four
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FIG. 2. Illustration of the fifth iterate prefractal of the classical
Sierpinski carpet, with 243 X243 pixels. Black pixels represent the
carpet, whereas white pixels are associated with gaps or voids.

“snapshots” of this image were taken. Two of the snapshots
were of size 6144 X 6144 pixels (which is divisible by mul-
tiples of 2), and two were of size 5120X 5120 pixels. Of
these snapshots, two, denoted 6144, and 5120,, were con-
centric with the original image, whereas the other two, de-
noted 6144, and 5120,, were centered about a randomly se-
lected point. Since results were similar with all four
snapshots, only one of them (6144,) is considered in the
following. The resolution of this snapshot was coarsened by
factors of 2, 4, and 8 (see Table I for details). Coarsening
refers to resampling of the original image in order to produce
a new image of lower resolution. This procedure was carried
out with the bilinear algorithm, implemented, e.g., in the
image manipulation software Adobe PHOTOSHOP. After
coarsening, images need to be thresholded to obtain binary
images. This thresholding was performed separately for ev-
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FIG. 3. Thresholded scanning electron micrograph of a thin sec-
tion of Central European soil. The soil particles are black and the
pores or voids are white.

ery image. Thresholding to obtain binary images was done
separately for every image by using an arbitrary gray value
of 128 (middle of the full spectrum) as the threshold. Appli-
cation of a less arbitrary thresholding method (described be-
low) confirmed that the midpoint gray value was acceptable
to threshold the images. In the resulting binary images, a
pixel value of 1 is associated with the Sierpinski carpet pre-
fractal, and a value of O corresponds to a hole or gap.

B. Scanning electron microscope images of soil thin section

An original scanning electron microscope (SEM) image
(Fig. 3) was obtained from a thin section of a block of soil
impregnated with resin. The soil block originated from the Bt
horizon of a Luvisol, developed on Loess, sampled in Cen-
tral Europe in the county of Gottingen, Germany. This spe-
cific soil horizon contains approximately 20% clay, 70% silt,
and 10% sand according to the German soil taxonomy. The
image, showing the surface of the soil thin section with a
depth of focus of about 1 wm, was taken with a field emis-
sion scanning electron microscope (FESEM), and resulted
from a combination of 75% backscattered and 25% second-
ary electrons. The image corresponds to a 544 X 363 um?

TABLE 1. Image sizes (in pixels) for the snapshots of the Sierpinski carpet, the SEM images of the soil
thin section, and the light transmission photographs (LTPs) of the Togolese soil.

Coarsening factor Sierpinski carpet

SEM (European soil) LTP (Togolese soil)

1 6144 X 6144
L.5

2 3072 X3072
3

4 1536 X 1536
5

6

6.67

8 768 X 768
10

3072 X 5072 8000 X 5060
2048 X 1368
4000 X 2530
1024 X 684
2000 X 1265
1600 X 1012
512X342
1200 X 759
800 X 506
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FIG. 4. Thresholded light transmission photograph of a thin sec-
tion of Togolese soil. The soil particles and aggregates are black,
and the pores or voids are white.

portion of the thin section and contains 3072 X 2052 pixels.
It was coarsened by factors of 1.5, 3, and 6 [8].

To threshold or “segment” a digitized image, one could in
principle proceed by trial and error until one achieves a
thresholding that appears reasonable, i.e., coincides with
some a priori idea one may have about the two categories of
pixels one attempts to separate. Unfortunately, this procedure
is very subjective and may lead to biases when one is trying
to compare images, or in the analysis of time sequences of
images of a given object, e.g., under evolving lighting con-
ditions. To palliate these difficulties, numerous automatic,
nonsubjective thresholding algorithms have been developed,
e.g., [22]. One of the most commonly used algorithms, re-
ferred to as the “minimum error algorithm,” is adopted in the
research described in the present article. According to this
algorithm, the histogram associated with an image is visual-
ized as consisting of two usually overlapping Gaussian dis-
tributions. A starting guess for the threshold is made. The
fraction of the pixels in each of the two sets of pixels defined
by this threshold is calculated, as are the mean and variance
of each of the sets. Then, in effect, a composite histogram is
formulated, which is a weighted sum of two Gaussian distri-
butions, each with mean and variance as just calculated, and
weighted by the calculated fraction. The gray-scale level at
which these two Gaussian distributions are equal is estimated
via solution of a quadratic equation. This gray-scale level,
truncated to an integer, gives the next guess for the threshold.
Again, the process is continued, iteratively, until it con-
verges. In its original formulation, the minimum error algo-
rithm suffers from the fact that the choice of the starting
guess used to initiate the iterative calculations influences the
convergence to a final threshold value. The resulting indeter-
minacy was avoided by using an objective approach devel-
oped by Boast and Baveye [23].

C. Transmitted light photograph of a thin section of a
Togolese soil

The light transmission photograph of the Togolese soil
(Fig. 4) was obtained by placing directly on a piece of pho-
tographic paper and illuminating for a set time a resin-
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impregnated thin section of a sample of soil obtained in 1992
in the research station of the Institut National des Sols at
Glidji (Aneho), in the “terres de Barre” region of southern
Togo (see [24] for further details). A portion of the photo-
graph representing a 24.6 X 14.6 mm? area of the thin section
was scanned at different resolutions with a digital scanner, to
produce a set of images with dimensions of 8000 X 5060,
4000 X 2530, 2000 X 1265, 1600 X 1012, 1200 X759, and
800 X 506 pixels, respectively. These images were thresh-
olded with the minimum error algorithm described in the
previous section, to produce binary images suitable for la-
cunarity evaluation.

D. Lacunarity calculations

Measurements with the gliding-box algorithms were car-
ried out with a minimum of 11X 11 to 31X 31 pixels, de-
pending on image size, and a maximum box size of 301
X 301 pixels. Both limits were adjusted to keep computation
time manageable. The sandbox algorithms were imple-
mented using a minimum circle diameter of at least 11 pix-
els, and a maximum circle diameter of approximately one-
fifth the largest dimension of the image. Again both limits
were adjusted to keep computation time manageable. Circle
diameters were incremented by multiples of ten pixel sizes
around each seed, until they reached the edges of the image.
This typically resulted in between 10 and 30 concentric
circles around each seed, depending on image size. This pro-
cedure was repeated for 50 to 700 seeds in increments of 50
seeds, i.e., 14 distinct measurements, which were subse-
quently averaged.

IV. RESULTS AND DISCUSSION

In order to compare the lacunarity of images having dif-
ferent pixel sizes, we systematically multiplied the size of
the moving window by the image coarsening factor. For in-
stance, a gliding-box size of 101 X 101 pixels for an image
that was coarsened by a factor of eight is equivalent to a
gliding-box of size 8(101X 101)=808 X 808 pixels for the
image before it was coarsened. This referencing of the side
length of the gliding boxes, and of the diameter of sand
boxes, to numbers of pixels in the original image affords a
convenient basis for the comparison of different algorithms,
particularly their visual comparison as in Figs. 5-8.

Calculation results obtained in the case of images of the
Sierpinski carpet (Fig. 5) show that the lacunarities measured
with the gliding-box algorithm decrease monotonically when
the side length of the gliding boxes is increased. At any
given side length, the lacunarity increases significantly as the
resolution is decreased. For example, at a normalized side
length of 100 pixels (in the original image), the lacunarity for
the 768 X 768 image is 11.6% larger than that for the higher-
resolution 6144 X 6144 image. The lacunarity of the high-
resolution Sierpinski carpet images decrease at a slower rate
than it does for low-resolution Sierpinski carpet images. If
one extrapolates to higher side lengths the data for the high-
est resolutions, the lacunarities of all the images appear to
converge near a normalized gliding-box side length of 2511
[(log;o(2511) =~ 3.34].
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FIG. 5. Lacunarity measured by the gliding-box algorithm
(GLBA) and by the modified sandbox algorithm (MSBA), both
with seeds only on the object (MSBAo) and on the object and in the
gaps (MSBAog), of the Sierpinski carpet images 6144 X 6144 (*),
3072 X 6072 (A), 1536 X 1536 (<), and 768 X 768 (OJ).

The lacunarities of the Sierpinski carpet images evaluated
with the modified sandbox algorithm with seeds both on the
object and in the gaps (MSBAog) also decrease systemati-
cally as the diameter of the sandboxes is increased. However,
in this case, the decrease is much more pronounced, from
lacunarity values close to 2.0 [log;((2.0)=0.30] for small
sandboxes, to values near 1.12 [log;((1.12)=0.05] at the
other end of the range of sandbox diameters considered. At a
normalized sandbox diameter of 100 pixels (in the original
image), the lacunarity associated with the 768 X 768 image is
merely 4.2% larger than that for the higher-resolution 6144
X 6144 image, and that difference decreases with increasing
sandbox diameter.

Measurements of the lacunarity of images of the Sierpin-
ski carpet with the MSBAo algorithm differ appreciably,
both qualitatively and quantitatively, from those obtained
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FIG. 6. Lacunarity measured by the gliding-box algorithm
(GLBA) and by the modified sandbox algorithm (MSBA), both
with seeds only on the object (MSBAo) and on the object and in the
gaps (MSBAog), of the SEM images 3072X2052 (*), 2048
X 1368 (A), 1024 X684 (<), and 512 % 342 (0J).
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FIG. 7. Lacunarity measured by the gliding-box algorithm
(GLBA) and by the modified sandbox algorithm (MSBA), both
with seeds only on the object (MSBAo) and on the object and in the
gaps (MSBAog), of the light transmission photographs of the Togo-
lese soil with dimensions 8000 X 5060 (*), 4000 X 2530 (A), 2000
X 1265 (<), and 1600X 1012 (O).

with the GLBA or MSBAog. Lacunarities are restricted to a
narrow domain (between 1.022 and 1.027), near the lowest
values obtained by GLBA, and very close to the minimum
value possible for A(r) of 1. That lacunarities evaluated with
MSBAOo are systematically lower than those calculated with
MSBAog can be explained by the fact that selection of seeds
belonging only to the object greatly increases the mass in
each sandbox, and therefore increases Z(Ql)(l), which in turn
lowers the ratio of Eq. (2), driving downward the value of
lacunarity. In the narrow range spanned by the MSBAo la-
cunarity in Fig. 5, lacunarities do not increase or decrease
monotonically. Close inspection reveals that three local
maxima occur in the vicinity of sandbox diameters of 100,
250, and 790 pixels [(log,((1)=2.0, 2.4, and 2.9, respec-
tively]. These maxima may be related to the largest gap sizes
in the Sierpinski carpet, which are 81 X 81, 243X 243, and
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FIG. 8. Lacunarity measured by the gliding-box algorithm
(GLBA) and by the modified sandbox algorithm (MSBA), both
with seeds only on the object (MSBAo) and on the object and in the
gaps (MSBAog), of the light transmission photographs of the Togo-
lese soil with dimensions 1200 X 759 (O) and 800 X 506 (+).

041306-6



INFLUENCE OF IMAGE RESOLUTION AND...

729 X 729 pixels. By comparison with results obtained with
the GLBA and MSBAog algorithms, lacunarities of the Sier-
pinski carpet images evaluated with the MSBAo algorithm
do not discernibly depend on image resolution.

One possible explanation of the strong effect of resolution
on the lacunarity estimated with the GLBA algorithm, and of
the absence of a similar effect on the estimates produced by
the MSBAog and MSBAo algorithms, is related to the shape
of the structuring elements used. A square structuring ele-
ment used to measure an image made up of squares may
magnify distortions caused by coarsening. Coarsening of im-
ages involves the combination of pixels and the arithmetic
averaging of their gray values. This process, along with the
subsequent thresholding needed to produce a binary image,
progressively distorts the small-scale structure of the object
represented in the image. For example, square structures or
gaps initially present in an image may be transformed into
“L” or “+” shapes after coarsening. As this happens, the
mass of the object contained in a gliding box or sandbox may
be affected significantly, and this effect may depend on the
shape of the structuring element. The hypothesis that the
shape of the structuring element affects the degree to which
the resolution of an image influences lacunarity measurement
is supported empirically by the measurements of Sierpinski
carpets by MSBAog (Fig. 5). For a normalized structuring
element size of /=100, these measurements show an average
difference in lacunarity of less than 2% between images at
different resolutions, whereas GLBA results differ by as
much as 11%. MSBAog uses the same statistics as GLBA
[Eq. (2)], but samples the object with circular structuring
elements instead of square ones. The sampling in MSBAog
is carried out randomly, but this appears not to be of much
consequence, since measurements by this algorithm were
made for several numbers of seeds (50-700) and did not lead
to great differences in values among measurements of the
same image.

Unlike in the case of the Sierpinski carpet images, the
lacunarities associated with the SEM images of the Central
European soil (Fig. 6) do not appear affected to any signifi-
cant extent by the resolution of the images. Also unlike in the
previous case, the lacunarities evaluated with the GLBA al-
gorithm are markedly larger than those measured with the
MSBAog algorithm. The latter lacunarities are, however,
once again significantly larger than the values obtained with
the MSBAo algorithm, to which they eventually converge as
the sandbox diameters increase. This convergence is not sur-
prising since it is reasonable that as the diameter of sand-
boxes increases, the exact location of the center of the sand-
boxes, whether on the object or in the gaps, becomes less and
less significant. The lacunarities evaluated with the MSBAo
algorithm are, in this case also, confined to a narrow range
(between 1.015 and 1.042), in which they exhibit a concave
curve, with a single maximum at a normalized sandbox di-
ameter close to 60 pixels [log;((60)=1.78], corresponding
to 10 pm.

Application of the minimum error thresholding algorithm
to the images obtained by scanning the light transmission
photograph of the thin section of the Togolese soils resulted
in very different thresholds for the images of size 800
X 506 and 1200 X759 pixels compared to the other images.
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In the two low-resolution images, the optimal threshold cal-
culated by the minimum error algorithm corresponded to
gray-scale values of 224 and 228, respectively, for the 800
X 506 pixel and for the 1200 X 759 pixel images, whereas it
was equal to 188 for the 1600 X 1012 pixel image, and to
189 for the higher-resolution images. Slight differences be-
tween the histograms of the various images probably account
for the discrepancy among the thresholds.

These differences in threshold values lead to significant
differences in the behavior of the lacunarity algorithms, as
shown in Figs. 7 and 8. In the four highest-resolution images
(Fig. 7), contrary to what was observed with the Sierpinski
carpet (Fig. 5) and particularly with the SEM images (Fig.
6), the GLBA algorithm yields the lowest lacunarity values
in most of the range of gliding box sizes considered, com-
pared to the MSBAog and MSBAo. The MSBAo algorithm
yields lacunarity curves that are markedly concave, unlike
the other two algorithms, which produce convex curves,
pointing upward at small sandbox diameters or gliding-box
side lengths. As in Figs. 5 and 6, the curves obtained by the
MSBAog and MSBAo algorithms converge at the upper end
of the range of sandbox diameters. Furthermore, all three
algorithms yield lacunarity estimates that seem independent
of image resolution. The slight differences in the lacunarity
of the various images evaluated by the MSBAog at low
sandbox diameters are somewhat erratic and do not follow a
particular trend with image resolution.

In a number of respects, both qualitatively and quantita-
tively, the situation is very different for the two low-
resolution images (Fig. 8). The lacunarities estimated by the
GLBA algorithm are now consistently the highest, and the
lacunarities evaluated with the MSBAog and MSBAo algo-
rithms are significantly lower than those displayed in Fig. 7
over the whole range of sandbox diameters considered. In
the two low-resolution images, all three algorithms also ap-
pear affected by image resolution, with the lacunarities of the
coarser-resolution image (800X 506) being systematically
higher than that of the 1200 X 759 image. These observations
may reflect a direct dependence of lacunarity on resolution,
which becomes noticeable in coarse-resolution images, or it
may be the quantitative expression of the opening up of
pores that resulted from the higher threshold in the 1200
X759 pixels image.

Up to this point, the discussion about the effect of image
resolution on lacunarity estimates has been confined to
marked differences in the positions of the different lacunarity
curves. There is, however, a more subtle effect of resolution
on the lacunarity estimates computed by the GLBA, the
MSBAog, and the MSBAo algorithm, which needs to be
acknowledged as well. In all three cases, for practical rea-
sons, it is reasonable to constrain the upper end of the range
of gliding-box side lengths or sandbox diameters that is used
in the calculations to be smaller than an arbitrary fraction of
the size of the original, uncoarsened image. Under these con-
ditions, this upper size of the gliding boxes or sandboxes is
independent of image resolution. However, a clear rationale
is lacking to also impose that the lower end of the range be
the same for all images. Theoretically, this lower limit could
go down to the size of individual pixels in each image, which
means that it could vary by as much as a factor of ten (or one
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log,o unit) in Figs. 5-8. In some cases, this can lead to la-
cunarity values varying by 33% at the lower limit, given the
convex shape of the curves.

In terms of the overall ranking of the three sets of images
on the basis of their lacunarity, cross comparison of Figs.
5-8 shows that for the GLBA, this ranking depends on the
range of gliding-box side lengths that one considers. In the
low range (small side lengths), the SEM images have by far
the highest lacunarity, followed by the Sierpinski carpet im-
ages and by the higher-resolution Togo images. In the high
range of gliding-box side lengths, the SEM images drop to
the bottom of the pack. The low-resolution Togo images ex-
hibit a behavior that is intermediate between the SEM im-
ages and the Sierpinski carpet at small gliding-box side
lengths, and lies between the other two sets of curves at large
gliding-box side lengths. Calculations with the MSBAog
suggest that the Sierpinski carpet images have the highest
lacunarity throughout the range of sandbox diameters consid-
ered, followed relatively consistently by the higher-
resolution Togo images, the SEM images and the lower-
resolution Togo images. Given the narrowness of the range
of lacunarities produced by the MSBAo, rankings of the
three sets of images may be less meaningful in this case.
Nevertheless, the higher-resolution Togo images appear to
have a slightly higher lacunarity than the other curves over
the whole range of sandbox diameters considered, followed
by the lower-resolution Togo images, the SEM images, and
the Sierpinski carpet images. These ranking results suggest
that there is no simple answer to the question of which one
of the three systems depicted in Figs. 2—4 is the most “lacu-
nar.” Each algorithm tested provides a slightly different an-
SWer.

The strong scale dependence of the lacunarity, as calcu-
lated by the GLBA, the MSBAog, and MSBAo, raises the
question of the usefulness of this index to characterize natu-
ral systems. The initial concept of lacunarity, sketched by
Mandelbrot [13], was that of a single number that, in com-
bination with a fractal dimension, could completely encapsu-
late the geometry of any given system and serve to predict
some of its other characteristics (e.g., transport or dielectric
properties in porous media). It is unclear how a strongly
scale-dependent lacunarity would be used for the same pur-
pose. If one does not try to reduce it to a single number (as is
done in the CSBA and MGLBA, or alternatively by approxi-
mating the lacunarity curves by straight lines and by using
the slope of these lines as an indicator of translation invari-
ance), there may not be any significant advantage in calcu-
lating lacunarities, compared with looking at the systems un-
der study through the lens of multifractal measures, e.g.,
[4,10]. Further research is needed to determine which ap-
proach is the most useful in practice to describe porous me-
dia.

The results obtained with the last two algorithms, the
CSBA and the MGLBA (Fig. 9), cannot be directly com-
pared with those of the other algorithms, since both the
CSBA and the MGLBA provide single lacunarity estimates,
independent of either the diameter of sandboxes or the side
length of gliding boxes. When the resolution decreases (i.e.,
when the coarsening factor increases in Fig. 9), the lacunar-
ity calculated with the CSBA remains virtually constant in a
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FIG. 9. (a) Mean lacunarity measured by the Chappard sandbox
algorithm (CSBAo and CSBAog) for images at different resolutions
(coarsening factors). Solid symbols represent images measured with
CSBAo and hollow symbols represent objects measured with
CSBAog. (b) Lacunarity measured with the modified gliding box
algorithm (MGLBA).

number of cases. For the SEM images, when seeds are taken
both in the object and in the gaps, calculation results indicate
that the lacunarity decreases slightly with decreasing resolu-
tion. The only case where a decrease with resolution is
marked is for the Togo images, regardless of how the seeds
are selected. The lacunarity for the two coarser-resolution
images are significantly lower than for the other images of
the same thin section.

Aside from this effect of resolution, the Sierpinski carpet
has by far the largest lacunarity when seeds are taken both in
the object and in the gaps (open squares in Fig. 9), and the
SEM and the Togo images have commensurate, lower la-
cunarity in that case. By contrast, when seeds are selected
only in the object, the higher-resolution images of the Togo
soil have the highest lacunarity, and the Sierpinski carpet and
the SEM images have virtually identical, much lower la-
cunarity. At the highest coarsening factors, CSBAo does not
appear able to discriminate between the three natural porous
media; their lacunarity appears identical.

For the lacunarity calculated with the MGLBA, a de-
crease with decreasing image resolution appears to be the
rule rather than the exception (Fig. 9, bottom graph). The
decrease is particularly marked (from 0.675 to 0.26) for the
SEM images. For the Togo images, passage from the 1600
X 1012 pixel image (coarsening factor 5) to the 1200
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X759 pixel image (coarsening factor 7) results in an in-
crease of the lacunarity, unlike in the case of the lacunarity
values obtained with the CSBA (Fig. 9, top graph). Because
of these different trends, the rankings of the lacunarities of
the Sierpinski carpet, the SEM images, and the Togo pictures
change with image resolution. At the high-resolution end
(low coarsening factor), the SEM images are the most lacu-
nar, followed by the Sierpinski carpets and the Togo images.
At the lower resolutions, the lacunarity of the SEM images
drops below that of the Sierpinski carpets, at least, and seems
destined to get lower than that of the Togo pictures as well.

The results obtained with the CSBA and the MGLBA
suggest that researchers interested in characterizing the prop-
erties of porous media and who would like to know if a
single, scale-independent lacunarity measure could be useful
for their purposes, should probably adopt the CSBAog,
which appears to provide consistent, differentiated informa-
tion. Like the other algorithms analyzed here, this algorithm
suffers from the fact that gray-scale images need to be
thresholded before they can be analyzed, giving rise occa-
sionally to artifactual variations of the resulting lacunarity, as
in the case of the Togo images. This operational shortcoming
might be resolved by adoption of one of the many sophisti-
cated image segmentation algorithms that have been devel-
oped in recent years, e.g., [22,25].

V. CONCLUSIONS

In the present paper, six different calculation algorithms
are applied to binary images of three different systems (a
theoretical fractal and two natural porous media). The calcu-
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lation results suggest that lacunarity estimates, as well as the
determination of the ranking of the three tested systems ac-
cording to their lacunarity, are affected strongly by the algo-
rithm used, by the resolution of the images to which these
algorithms are applied, and, at least for three of the algo-
rithms (producing scale-dependent lacunarity estimates), by
the scale at which the images are observed. Depending on
the conditions under which the estimation of the lacunarity is
carried out, lacunarity values range from 1.02 to 2.14 for the
three systems tested, and all three of the systems can be
viewed alternatively as the most or the least “lacunar.”
Among the algorithms that produce a scale-invariant lacunar-
ity, the Chappard sandbox algorithm (CSBAog), with seeds
selected both in the object under study and in the gaps, ap-
pears to be the most reliable option. Further research will be
needed to determine if the estimation of scale-dependent la-
cunarities, for example with algorithms GLBA, MSBAog, or
MSBAo, presents practical advantages over the calculation
of the multifractal f(«) spectrum [26,27] in the case of po-
rous media.
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